Tous les exercices corrigés pour la seconde épreuve orale de l'agrégation de mathématiques. La préparation des candidats aux concours de recrutement de l'Éducation nationale réclame des outils et des méthodes qu'il leur est souvent bien difficile de se procurer, faute d'une littérature adaptée aux exigences de la situation.
Taillé sur mesure pour les candidats à l'agrégation, cet ouvrage est exclusivement consacré à la seconde épreuve orale d'exercices. Il rassemble, pour chacun des 50 thèmes incontournables en analyse et probabilités, puis en algèbre et géométrie, 6 exercices intégralement corrigés. De nombreux conseils méthodologiques sont ajoutés afin de permettre au candidat de convaincre le jury, dans le temps imparti.
Cet ouvrage, destiné aux étudiants préparant l'agrégation de Mathématiques (interne ou externe), n'est pas organisé comme un cours suivant strictement les programmes. L'auteur a rédigé les chapitres de ce livre de manière indépendante, en se concentrant sur les thèmes importants des programmes. Il a également privilégié la recherche d'exemples d'applications et de contre-exemples, illustrant la nécessité de certaines hypothèses dans l'énoncé d'un théorème ; c'est ce travail de synthèse qu'il s'agit de faire dans l'élaboration d'un plan de leçon d'oral. Chaque chapitre se termine par une série d'exercices, tous corrigés en détails.
Tous les exposés pour la première épreuve orale de l'agrégation de mathématiques. La préparation des candidats aux concours de recrutement de l'Éducation nationale réclame des outils et des méthodes qu'il leur est souvent bien difficile de se procurer, faute d'une littérature adaptée aux exigences de la situation.
Taillé sur mesure pour les candidats à l'agrégation, cet ouvrage est exclusivement consacré à la première épreuve orale d'exposés. Il rassemble les 50 leçons incontournables en analyse et probabilités, puis en algèbre et géométrie pour permettre au candidat d'élaborer, dans le temps imparti, plan, théorèmes et définitions attendus.Chaque leçon se termine par une série de questions que pourrait poser le jury afin de se mettre dans les meilleures conditions du concours.
Cette deuxième édition des « Thèmes pour l'agrégation de mathématiques » est corrigée et augmentée de trois chapitres.
Les problèmes corrigés qui la composent, destinés aux candidats à l'Agrégation interne de mathématiques, seront également utiles aux étudiants de licence et maîtrise de mathématiques ainsi qu'aux candidats à l'Agrégation externe. Les enseignants y trouveront également une source d'inspiration. La préparation aux concours d'Agrégation (interne et externe) est essentiellement un travail de synthèse. C'est dans cette optique que l'ouvrage est agencé. Pour chacune des trois parties qui constituent ce volume :
- topologie de Mn (K) ;
- systèmes différentiels ;
- polynômes orthogonaux et séries de Fourier ;
Le plan de travail est identique. Tout d'abord, dans un chapitre d'introduction, on rappelle les définitions essentielles et on annonce les thèmes abordés avec des applications. Le chapitre suivant regroupe, sous forme de problème, des résultats classiques et importants qui seront utilisés dans les problèmes qui suivent. Ce chapitre peut être utilisé pour réviser des notions de base. Les chapitres suivants sont consacrés à quelques thèmes qui font souvent l'objet de problèmes de concours. On trouvera également des problèmes posés au concours d'Agrégation qui illustrent certaines notions introduites dans les problèmes précédents.
Cette deuxième édition du livre « Analyse matricielle » est corrigée et augmentée d'un chapitre sur les matrices réelles positives et stochastiques.
Cet ouvrage est consacré à l'étude de l'espace vectoriel Mn (K) des matrices carrées à coefficients réels ou complexes du point de vue algébrique et topologique, préalable nécessaire à tout cours d'analyse numérique. La synthèse réalisée par l'auteur permet aux étudiants d'approfondir leurs connaissances sur les espaces vectoriels normés et l'algèbre linéaire, des notions de base en algèbre linéaire et en topologie étant suffisantes pour la lecture de ce livre.
Le public visé est celui des candidats à l'agrégation (interne et externe) et également celui des étudiants de licence et maîtrise de mathématiques. Chaque chapitre est suivi d'une série d'exercices corrigés. Les résultats classiques sont illustrés par des exemples qui peuvent trouver leur place dans les leçons d'oral des concours.
L'intégralité des définitions et des résultats en analyse, algèbre et probabilités à destination des étudiants des deux premières années de Licence, des élèves en CPGE et des candidats aux Capes. Ce formulaire contient tous les théorèmes, définitions et formules indispensables à l'étudiant en mathématiques. Il couvre les programmes des deux premières années de Licence et des deux années de classes préparatoires aux grandes écoles. Il intéressera particulièrement les candidats au Capes de mathématiques.Sommaire : 1. Suites numériques - 2. Fonctions numériques d'une variable réelle - 3. Intégration - 4. Espaces vectoriels normés - 5. Séries numériques - 6. Intégrales généralisées - 7. Equations différentielles - 8. Suites de fonctions - 9. Séries de fonctions - 10. Séries entières - 11. Séries de Fourier - 12. Fonctions vectorielles - 13. Calcul différentiel - 14. Théorie des ensembles - 15. Groupes, anneaux et corps - 16. Arithmétique dans Z - 17. Nombres complexes - 18. Espaces vectoriels - 19. Déterminants - 20. Polynômes - 21. Réduction des endomorphismes - 22. Formes bilinéaires et quadratiques - 23. Espaces préhilbertiens - 24. Géométrie affine et euclidienne - 25. Dénombrement et probabilités - 26. Variables aléatoires réelles discrètes - 27. Variables aléatoires réelles - 28. Variables aléatoires à densité
Ce cours d'algèbre et de géométrie s'adresse aux candidats préparant spécifiquement le Capes externe de mathématiques.
Les notions étudiées ici le sont de façon rigoureuse en démontrant tous les résultats énoncés. Chaque chapitre se termine par une série d'exercices tous corrigés en détail qu'il faut maîtriser avant de travailler sur des épreuves écrites du concours.Les premiers chapitres sont consacrés à l'étude du corps C des nombres complexes, aux espaces vectoriels réels ou complexes et aux déterminants, à l'application des nombres complexes à la géométrie euclidienne, à l'arithmétique dans Z : division euclidienne, nombres premiers, anneaux Z/nZ, aux polynômes, à la réduction des endomorphismes, aux formes bilinéaires et quadratiques réelles ou complexes, aux espaces préhilbertiens et à la géométrie dans ces espaces et enfin à l'étude des structures de groupe, d'anneaux et de corps. Le dernier chapitre rassemble une sélection de problèmes d'algèbre et de géométrie issus des épreuves du Capes. Bibliographie sélective et index viennent compléter l'ensemble.
Ce cours de probabilités s'adresse aux candidats préparant spécifiquement le Capes externe de mathématiques. Les notions étudiées ici le sont de façon rigoureuse en démontrant tous les résultats énoncés. Chaque chapitre se termine par une série d'exercices tous corrigés en détail qu'il faut maîtriser avant de travailler sur des épreuves écrites du concours.Les premiers chapitres sont consacrés à l'étude de l'analyse combinatoire (outils ensemblistes et dénombrement), aux axiomes de probabilités et aux variables aléatoires en étudiant le cas discret, puis le cas général et enfin le cas des variables aléatoires à densité. Ce cours est ausssi une application importante de l'étude des séries numériques, des séries de fonctions et de l'intégration développées dans le volume d'analyse. Le dernier chapitre rassemble une sélection de problèmes de probabilités issus des épreuves du Capes. Bibliographie sélective et index viennent compléter l'ensemble